
1/31/2021 C Programming-Input-Output Redirection

localhost:8888/notebooks/C Programming-Input-Output Redirection.ipynb 1/8

Understanding I/O Redirection

C:\> DIR > Files.txt <Enter>

C:\> MORE < Files.txt <Enter>

C:\> DIR >> Append.txt <Enter>

C:\> DIR | MORE <Enter>

1/31/2021 C Programming-Input-Output Redirection

localhost:8888/notebooks/C Programming-Input-Output Redirection.ipynb 2/8

In [1]:

In [2]:

Hello, World!

Standard output

Standard error

C Programs Use Common File Handles

Handles Default
stdin Keyboard
stdout Console screen
stderr Console screen
stdprn Printer

#include <stdio.h>

int main(void)
{
 fputs("Hello, World!", stdout);
}

#include <stdio.h>

int main(void)
{
 fputs("Standard output", stdout);
 fputs("Standard error", stderr);
}

C:\> Program > File.txt <Enter>
Standard Error

C:\>

1/31/2021 C Programming-Input-Output Redirection

localhost:8888/notebooks/C Programming-Input-Output Redirection.ipynb 3/8

Displaying Redirected Input in Uppercase
In [3]:

In [4]:

In [5]:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 FILE *fp = fopen("Alphabet.txt", "r");

 char letter;

 while ((letter = fgetc(fp)) != EOF)
 fputc(letter, stdout);

 fclose(fp);
}

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char letter;

 while ((letter = fgetc(stdin)) != EOF)
 fputc(toupper(letter), stdout);
}

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char letter;

 while ((letter = getchar()) != EOF)
 putchar(toupper(letter));
}

1/31/2021 C Programming-Input-Output Redirection

localhost:8888/notebooks/C Programming-Input-Output Redirection.ipynb 4/8

Preceding Redirected Input with a Line
Number

In [6]:

Displaying a Count of Redirected Input

#include <stdio.h>

int main(void)
{
 char line[256];
 int line_number = 0;

 while (fgets(line, sizeof(line), stdin))
 printf("%d %s", ++line_number, line);
}

1/31/2021 C Programming-Input-Output Redirection

localhost:8888/notebooks/C Programming-Input-Output Redirection.ipynb 5/8

In [7]:

Splitting Redirected Input to the Screen and
Printer

Redirected lines 0

#include <stdio.h>

int main(void)
{
 char line[256];
 int line_number = 0;

 while (fgets(line, sizeof(line), stdin))
 line_number++;

 printf("Redirected lines %d\n", line_number);
}

1/31/2021 C Programming-Input-Output Redirection

localhost:8888/notebooks/C Programming-Input-Output Redirection.ipynb 6/8

In [8]:

Displaying the First n Lines of Redirected
Input

/tmp/tmp5wmfvk_3.c: In function ‘main’:
/tmp/tmp5wmfvk_3.c:10:18: error: ‘stdprn’ undeclared (first use in this functio
n); did you mean ‘stderr’?
 fputs(line, stdprn);
 ^~~~~~
 stderr
/tmp/tmp5wmfvk_3.c:10:18: note: each undeclared identifier is reported only onc
e for each function it appears in
[C kernel] GCC exited with code 1, the executable will not be executed

#include <stdio.h>

int main(void)
{
 char line[256];

 while (fgets(line, sizeof(line), stdin))
 {
 fputs(line, stdout);
 fputs(line, stdprn);
 }
}

1/31/2021 C Programming-Input-Output Redirection

localhost:8888/notebooks/C Programming-Input-Output Redirection.ipynb 7/8

In [9]:

What You will Learn Next

#include <stdio.h>
#include <stdlib.h>

void main(int argc, char *argv[])
 {
 char line[255];
 int i, j;

 if (argc < 2)
 j = 10;
 else
 j = atoi(argv[1]);

 for (i=0; i < j; i++)
 {
 if (fgets(line, sizeof(line), stdin) == NULL)
 break;
 fputs(line, stdout);
 }
 }

C arrays let you store multiple values of the same type. Common operations C
programmers must perform are to search an array for a specific value and to
sort an array in ascendig or descending order.

#include <stdio.h>
#include <string.h>

1/31/2021 C Programming-Input-Output Redirection

localhost:8888/notebooks/C Programming-Input-Output Redirection.ipynb 8/8

#define ARRAY_SIZE 5

int main(void)
{
 char *values[ARRAY_SIZE] = { "AAA", "CCC", "DDD", "BBB", "EEE" };

 for (int i = 0; i < ARRAY_SIZE; ++i)
 if (strcmp(values[i], "BBB") == 0)
 printf("Found BBB at index %d\n", i);
}

